KUMANDA ELEMANLARI
1.1 GENEL BİLGİLER
Elektrik makinalarının ve elektrikli aygıtların çalıştırılmalarında kullanılan elemanlara kumanda elemanları denilir. Kumanda elemanları, sıklıkla kumanda devrelerinde kullanılırlar. Bu elemanları tanımak ve işlevlerini bilmek, devrelerin öğrenilmesi için bir ön adım olarak düşünülmelidir. Bu sayede karmaşık devrelerin işleyişlerinin çözümünün daha kolay anlaşılabilmesine olanak sağlanır.
Bu bölümde anlatılan temel kumanda elemanları şunlardır;
- Butonlar
- Anahtarlar
- Lambalar
- Sınır Anahtarları
- Röleler
- Kontaktörler
- Aşırı Akım Röleleri
- Zaman Röleleri
- Valfler
- Termostatlar
- Paket şalterler
1.2 BUTONLAR
Elektrik akımının geçip geçmemesini, yön değiştirmesini sağlayan elemanlardır. Bu elemanların kontaklarından akım geçer. Normalde açık kontaklı bir anahtardan akım geçmez. Butona basarak kontak kapandığında akım geçebilir. Normalde kapalı kontaklı bir elemandan akım geçer. Butona basarak kontak açıldığında akım geçişi durur.
1.2.1 Yapılarına Göre Butonlar
1.2.1.1 Normalde Açık Kontaklı Buton
Bu elemana kısaca başlatma (start) butonu adı verilebilir. Butona basıldığında kontak kapanarak devre tamamlanır. Buton serbest bırakıldığında ise kontak tekrar eski konumuna döner.
Şekil 1.1 Başlatma butonu simgesi Şekil 1.2 Başlatma butonu | | Şekil 1.3 Başlatma butonunun devrede gösterimi |
1.2.1.2 Normalde Kapalı Kontaklı Buton
Bu elemana kısaca durdurma (stop) butonu adı verilebilir. Butona basıldığında kontak açılarak devre akımı kesilir. Buton serbest bırakıldığında tekrar eski konumuna döner.
Şekil 1.4 Durdurma butonu simgesi Şekil 1.5 Durdurma butonu | | Şekil 1.6 Durdurma butonunun devrede gösterimi |
1.2.1.3 Çift Yollu Buton
Biri normalde kapalı, diğeri normalde açık iki adet kontağa sahip olan butondur. Butona kuvvet uygulandığında kontaklar yer değiştirir. Bir işleme son verirken,diğer bir işlemi başlatmak istenen yerlerde kullanılır.
Şekil 1.7 Çift Yollu buton simgesi Şekil 1.8 Çift yollu buton | | Şekil 1.9 Çift yollu butonun devrede gösterimi |
1.2.1.4 Ortak Uçlu Buton (Jog Buton)
Butonun normal konumunda 1-2 bağlantılarından akım geçmektedir. Butona kuvvet uygulandığında devre 1-4 bağlantıları üzerinden tamamlanır. Buton serbest bırakıldığında normal konumuna döner. Çift yollu butondan farkı, 1 numaralı ucun ortak olmasıdır.
Şekil 1.10 Jog buton simgesi Şekil 1.11 Jog butonu | | Şekil 1.12 Jog butonunun devrede gösterimi |
1.2.2 Çalışma Şekillerine Göre Butonlar
1.2.2.1 Kalıcı Buton (Anahtar)
Kalıcı butona basıldığında, buton durumunu değiştirir. Kalıcı buton serbest bırakıldığında, normal konumuna dönmez. Yani basıldığı şekilde kalır. Başka bir kumanda elemanı kalıcı butonu tekrar normal konumuna döndürür. Bu eleman bir aşırı akım rölesi veya bir durdurma butonu olabilir.
Şekil 1.13 Kalıcı tip butonun devrede gösterimi
1.2.2.2 Ani Temaslı Buton
Ani temaslı butona basıldığında, buton durumunu değiştirir. Serbest bırakıldığında, ani temaslı buton otomatik olarak normal konumuna döner.
1.3 ANAHTARLAR
En çok kullanılan kumanda elemanlarıdır. Anahtarların butondan farkı kalıcı tipte olmasıdır. Şekil 1.14’teki anahtar normalde açık konumda kullanılmaktadır.
Şekil 1.14 Anahtar simgesi Şekil 1.15 Anahtar | | Şekil 1.16 Anahtarın devrede gösterimi |
1.4 LAMBALAR
Kumanda devrelerinde en çok kullanılan elemanlar sinyal lambalarıdır. Sinyal lambalarının gövdelerine neon veya akkor telli lamba takılır. Neon lambalar 220 V gibi yüksek gerilimli kumanda devrelerinde, ak kor telli lambalar ise 36 V gibi düşük gerilimli kumanda devrelerinde kullanılırlar.
Şekil 1.17 Lamba simgesi | | Şekil 1.18 Lamba |
Şekil 1.19 Lambaların devrede gösterimi
Sinyal lambaları genellikle eletrik tablolarına bağlanacak şekilde yapılırlar. Bu bağlamada, sinyal lambasının gövdesi tablonun arka tarafında kalır. Sinyal lambasının bombeli ve renkli camı tablonun ön yüzünde bulunur.
1.5 SINIR ANAHTARLARI
Hareketli aygıtlarda bir hareketi durdurup başka bir hareketi başlatan ve aygıtın hareket eden elemanı tarafından çalıştırılan kumanda elemanına sınır anahtarı denir. Yapılarına göre sınır anahtarları, makaralı, pimli ve manyetik olmak üzere üç kısıma ayrılır. Şekil 1.20’de gerçek sınır anahtarları, Şekil 1.21’de de devre sembolleri görülmektedir.
Şekil 1.20 Sınır anahtarları | |
|
1.5.1 Makaralı Sınır Anahtarı
Aygıtın genellikle sabit kısmına bağlanırlar. Aygıtın hareketli kısmında bulunan bir çıkıntı, sınır anahtarının makarasına çarptığında, sınır anahtarının durumunu değiştirir. Sınır anahtarında bulunan kapalı kontaklar açılır, açık kontaklar kapanır. Sınır anahtarındaki bu durum değişikliği de aygıtı durdurur veya aygıtın çalışmasını sağlar.
Şekil 1.22 Makaralı sınır anahtarı
1.5.2 Pimli Sınır Anahtarı
Aygıtın genellikle aygıtın sabit kısmına bağlanırlar. Aygıtın hareketli kısmında bulunan bir çıkıntı sınır anahtarının pimine çarptığında, sınır anahtarının durum değiştirmesine neden olur. Sınır anahtarında bulunan kapalı kontaklar açılır, açık kontaklar kapanır. Kontakların durum değiştirmesi, aygıtı durdurur veya aygıtta yeni bir hareketi başlatır. Pimli sınır anahtarında pimin hareket kursunun uygun büyüklükte olması gerekir. Aksi takdirde aygıtın hareketli parçası, anahtarın kursu kadar olan mesafede duramaz.Hareketli parça sınır anahtarının parçalanmasına neden olur.
Şekil 1.22 Pimli sınır anahtarı
1.5.3 Manyetik Sınır Anahtarı
Makaralı ve pimli sınır anahtarları mekanik bir hareketle çalışırlar. Yani mekanik bir hareket bu çeşit sınır anahtarlarının konumunu değiştirir. Manyetik sınır anahtarlarında ise bu durum farklıdır. Bu sınır anahtarı sabit mıknatıs ve kontak bloğu olmak üzere iki kısımdan oluşur. Kontak bloğu aygıtın sabit kısmına, sabit mıknatıs ise aygıtın hareketli kısmına bağlanır. Kontak bloğunda normalde açık ve normalde kapalı bir kontak vardır. Kontak parçalarından biri manyetik bir maddeden yapılır. Aygıt çalışırken zaman zaman kontak bloğu ile sabit mıknatıs karşı karşıya gelirler. Bu durumda sabit mıknatıs kontağın manyetik parçasını kendine doğru çeker. Kontağın açılmasına veya kapanmasına neden olur.
Manyetik anahtarlara Reed Kontak adı verilir. İçindeki hava alınmış şeffaf bit tüp içinde yerleştirilmiş
Şekil 1.23 Manyetik sınır anahtarı
1.5.4 Çalışma Şekillerine Göre Sınır Anahtarları
Ani Temaslı ve Kalıcı Tip olmak üzere iki kısıma ayrılırlar. Sınır anahtarının durum değiştirmesine neden olan hareket ortadan kalktığında, ani temaslı sınır anahtarı hemen normal konumuna döner (yay nedeniyle). Halbuki bir hareket nedeniyle kalıcı tip sınır anahtarı durum değiştirirse, anahtar yeni konumnda kalır. Otomatik olarak normal konumuna dönmez. Ters yöndeki başka bir hareket kalıcı tip sınır anahtarını normal konumuna döndürür.
1.6 RÖLELER
Ufak güçteki elektromanyetik anahtarlara röle adı verilir. Röleler elektromıknatıs, palet ve kontaklar olmak üzere üç kısımdan oluşur. Elektromıknatıs,
Şekil 1.24 Gerçek bir röle
Demir nüvenin ön yüzüne plastikten yapılmış bir pul konur. Bu pul, bobin akımı kesildikten sonra artık mıknatısıyet nedeniyle paletin
Demir nüvenin ön yüzünde açılan oyuğa bakırdan yapılmış bir halka geçirilir. Bu bakır halka konmazsa alternatif alan nedeniyle palet titreşim yapar. Kontaklar açılıp kapanır ve röle gürültülü çalışır.
Şekil 1.25 Rölenin iç yapısı
Rölelerde bir veya daha fazla sayıda normalde açık ve normalde kapalı kontak bulunur. Kontakların açılıp kapanmalarını, rölenin paleti sağlar. Bobin enerjilendiğinde, palet çekilir. Normalde kapalı kontaklar açılır, normalde açık kontaklar kapanır. Rölenin paletine bağlanmış olan bir yay kontakların nornal konumda kalmalarını sağlar. Kontakların yapımlarında gümüş, tungsten, palladyum metalleri ve bunların alaşımları kullanılır.
Şekil 1.26 Röleli devre örneği
Şekil 1.26’da verilen rölenin bobinine bir gerilim uygulandığında röle enerjilenir ve paletini çeker. Palet üzerinde bulunan 1-3 numaralı kontak açılır ve 1-2 numaralı kontak kapanır. Bobinin akımı kesildiğinde, röle üzerinde bulunan yay, paletin
Şekil 1.27 Röle ve kontaklarının simgeleri
1.7 KONTAKTÖRLER
Büyük güçteki elektromanyetik anahtarlara kontaktör adı verilir. Rölelerde olduğu gibi kontaktörler de elektromıknatıs, palet ve kontaklar olmak üzere üç kısımdan oluşur. Kontaktörler, bir ve üç fazlı motor, ısıtıcı, kaynak makinesi, trafo vb. alıcıların otomatik olarak kumanda edilmesinde kullanılır. Bu elemanların bobinlerinin gerilimleri DC ya da AC olarak 24 - 48 - 220 - 380 volt olabilmektedir.
Şekil 1.28 Kontaktörün iç yapısı
Şekil 1.29 Gerçek bir kontaktör
Şekil 1.28’de verilen kontaktörün bobinine bir gerilim uygulandığında kontaktör enerjilenir ve paletini çeker. Palet üzerinde bulunan 5-6 numaralı kontak ve 7-8 numaralı kontak açılır. 1-2 numaralı kontak ve 3-4 numaralı kontak kapanır. Bobinin akımı kesildiğinde, kontaktör üzerinde bulunan yay, paletin
1.7.1 Kontaktörlerin Yapısı
1.7.1.1 Bobinler (Elektromıknatıs)
Bobin ve
Şekil 1.30 Enerjilenmiş kontaktör
Demir nüvenin dış bacaklarına plastikten yapılmış iki pul konur. Bu pullar, bobin akımı kesildikten sonra kalan artık mıknatısıyet nedeniyle paletin
Manyetik alan maksimum olduğunda palet çekilir, sıfır olduğunda da palet bırakılır. Bu nedenle palet titreşir, kontaklar açılır ve kapanır, kontaktör çok gürültülü olarak çalışır. Bu sakıncayı gidermek için
Bir transformatörün sekonder sargısı gibi çalışan bu bakır halkaların her birinde gerilim indüklenir. Halkalar kısa devre edilmiş olduklarından, indüksiyon gerilimi halkalardan akım dolaştırır ve halkalar ek bir manyetik alan yaratır. Bu manyetik alan esas manyetik alandan 90 derece geride olduğundan,
Şekil 1.31 Kontaktörün devre üzerinde gösterimi
1.7.1.2 Palet
Kontaktör nüvesinin hareketli kısmına palet denir. Palet üzerine kontaklar monte edilmiştir. Kontaktörlerde kontakların açılıp kapanmaları palet ile sağlanır. Palet, yerçekimi kuvvetiyle veya bir yay aracılığı ile
1.7.1.3 Kontaklar
Normalde açık ve normalde kapalı olmak üzere iki tip kontak vardır. Palet üzerine monte edilen hareketli kontakların bir kısmı kontaktör çalışmaz iken açık konumda, bir kısmı ise kapalı konumdadır. Kontaktör bobini enerjilendiğinde ise kontaklar durum değiştirir. Kontakların yapımında gümüşün; bakır, nikel, kadmiyum,
- Güç kontakları (Ana Kontaklar)
- Kumanda kontakları (Yardımcı Kontaklar)
Güç kontakları yüksek akıma dayanıklı olup, motor vb. alıcıları çalıştırmak için kullanılır. Bu nedenle yapıları büyüktür. Kumanda kontakları ise, termik aşırı akım rölesi, zaman rölesi, ısı kontrol rölesi, mühürleme vb. gibi düzeneklerin çalıştırılmasında görev yapar. Bu nedenle yapıları küçüktür.
Şekil 1.32 Bir kontaktörün yapısı
Kısaca; ana kontaklar yük akımını, yardımcı kontaklar kumanda devresinin akımını taşırlar. Kontaktörün içinde normalde açık ve normalde kapalı olmak üzere değişik sayıda kontak bulunur. Bobin enerjisiz iken bazı kontaklar açık konumda bekler. Bobin enerjilendiğinde açık kontaklar kapalı, kapalı kontaklar ise açık hale gelir. Kontaktörde kontakların konumunun değişimi Tablo 1.1’de gösterilmiştir.
Tablo 1.1 Kontaktörde Kontakların Konum Değişimi
Şekil 1.33 Bir alternatif akım kontaktörünün devresi
Şekil 1.33’te, bir buton ve bir kontaktörle yapılan bağlantının şeması verilmiştir. Bu bağlantıda başlatma butonu açıkken, A kontaktörü enerjilenemez. Yani A kontaktörü normal konumunda bulunur. Bu durumda A1 kontağı açık ve L1 lambası sönüktür. A2 kontağı kapalı olduğunda, L2 lambası yanmaktadır. Başlatma butonuna basıldığında A kontaktörü enerjilenir. Normalde açık A1 kontağı kapanır ve L1 lambası yanar. Normalde kapalı A2 kontağı açılır, yanan L2 lambası söner. Başlatma butonu serbest bırakıldığında, A2 kontaktörünün enerjisi kesilir. Kontaklar normal konumlarına dönerler. L1 lambası söner ve L2 lambası yanar.
Şekil 1.34 Bir doğru akım kontaktörünün devresi
Şekil 1.34’te ise, başlatma butonuna basıldığında P ucundan gelen akım başlatma butonundan, A1 kontağı ve A bobininden geçerek devresini tamamlar. A kontaktörü veya rölesi, normal gerilimle enerjilenir. Normalde kapalı A1 kontağı açılır. R1 direnci A bobinine seri olarak bağlanır. R1 direncinde düşen gerilim nedeniyle A bobini daha küçük bir gerilimle çalışmaya devam eder. Çünkü A bobinine uygulanan bu küçük gerilim, paletin çekik kalmasını sağlar. A bobini enerjilenince, A2 kontağı kapanır ve L1 lambası yanar. A3 kontağı açılır, yanan L2 lambası söner.
1.8 AŞIRI AKIM RÖLELERİ
Aşırı akımların elektrik motorlarına vereceği zararları önlemek için kullanılan elemanlara, aşırı akım rölesi adı verilir. Elektrik devrelerinde kullanılan sigortalar da koruma görevi yaparlar. Çalışma karakteristikleri nedeniyle sigortalar elektrik motorlarını koruyamazlar.Yalnız hatları korurlar.
Şekil 1.35 Aşırı akım rölesi
Aşırı akım röleleri motorlara seri olarak bağlanırlar.Yani bir aşırı akım rölesinden, motorun şebekeden çektiği akım geçer. Çalışma anında motor akımı kısa bir süre için normal değerinin üzerine çıkarsa, bu aşırı akım motora zarar vermez. Aşırı akımın motordan sürekli olarak geçmesi, motor için sakınca yaratır. Çünkü uzun süre geçen aşırı akım, motorun sıcaklık derecesini yükseltir ve motoru yakar. Bu nedenle kısa süreli aşırı akımlarda aşırı akım rölesinin çalışıp motoru devreden çıkarmaması gerekir. Motorun yol alma anında kısa süre çektiği aşırı akım, bu duruma örnek olarak gösterilebilir. Böyle geçici durumlarda rölenin çalışması, geciktirici bir elemanla önlenir.
Herhangi bir nedenle motor fazla akım çektiğinde, aynı akım aşırı akım rölesinden de geçeceğinden, aşırı akım rölesinin kontağı açılır. Açılan kontak, motor kontaktörünün enerjisini keser. Böylece motor devreden çıkar ve yanmaktan korunmuş olur. Üzerinden geçen fazla akım nedeniyle atan bir aşırı akım rölesi, röle üzerinde bulunan butona elle basarak kurulur. Yalnız aşırı akım rölesini kurmadan önce rölenin atmasına neden olan arızayı gidermek gerekir. Bütün iş tezgahlarında kullanılan aşırı akım röleleri elle kurulurlar. Bazı ev tipi aygıtlarda örneğin buz dolaplarında kullanılan aşırı akım röleleri, devrenin açılmasınadan bir süre sonra otomatik olarak normal konumuna dönerler. Yani bu aşırı akım röleleri kendi kendilerine kurulurlar. Bazı aşırı akım röleleri de üzerlerinde bulunan bir vida aracılığı ile hem otomatik ve hem de elle kurma konumuna dönüştürülebilirler.
Bir fazlı alternatif akım veya doğru akım motor devrelerinde, aşırı akım rölesi yalnız bir iletken üzerine konur. Üç fazlı motor devrelerinde genellikle her faz için bir aşırı akım rölesi kullanılır. Bazen de yalnız iki fazın üzerine bir aşırı akım rölesi konur. Güç devresinde kullanılan aşırı akım röleleri daha çok bir kontağı kumanda ederler. Bazen de her aşırı akım rölesinin ayrı bir kontağı olur. Aşırı akım röleleri manyetik ve termik olmak üzere iki kısıma ayrılırlar.
1.8.1 Manyetik Aşırı Akım Rölesi
Motor akımının manyetik etkisiyle çalışan aşırı akım rölelerine, manyetik aşırı akım rölesi adı verilir. Bir manyetik aşırı akım rölesi elektromıknatıs, kontak ve geciktirici eleman olmak üzere üç kısımdan oluşur. Elektromıknatısın bobini güç devresinde motora seri olarak bağlanır. Yani bobinden motorun akımı geçer.
Şekil 1.36 Manyetik aşırı akım rölesi
Aşırı akım rölesinin normalde kapalı kontağı kumanda devresinin girişine konur. Bu kontak açıldığında, kumanda devresinin akımı kesilir ve motor durur. Kısa süreli aşırı akımlarda, örneğin motorun yol alma anında çektiği akımda,rölenin çalışıp kontağı açması, yağ dolu silindir içinde hareket eden bir pistonla önlenir.
Aşırı akım rölesinin bobininden normal değerinin üzerinde bir akım geçtiğinde, bobin
Manyetik aşırı akım rölelerinde akım ayarı,
Şekil 1.37 Manyetik aşırı akım röle simgesi
1.8.1.1 Manyetik Aşırı Akım Rölelerinin Motor Devrelerinde Kullanılması
Manyetik aşırı akım röleleri üç fazlı motor devrelerine genellikle şekildeki gibi bağlanırlar. Bu bağlantıda üç faz üzerine konan üç manyetik aşırı akım rölesi, bir kapalı kontağı kumanda eder.
Şekil 1.38 Güç ve kumanda devresi
Çalışma devam ederken, motor herhangi bir nedenle uzun süre aşırı akım çekerse, manyetik aşırı akım rölesinin kapalı kontağı açılır. Çalışan kontaktör ve motor devreden çıkar.Böylece motor yanmaktan korunmuş olur.
1.8.2 Termik Aşırı Akım Rölesi
Motor akımının yarattığı ısının etkisiyle çalışan aşırı akım rölelerine, termik aşırı akım rölesi edı verilir. Termik aşırı akım rölelerinin endirekt ısıtmalı, direk ısıtmalı ve ergiyici alaşımlı olmak üzere üç çeşidi vardır. Termik aşırı akım röleleri devrelerde, Şekil 1.39’daki gibi gösterilirler.
Şekil 1.39 Termik aşırı akım röle simgesi
1.8.2.1 Endirekt Isıtmalı Termik Aşırı Akım Rölesi
Şekil 1.40’ta endirekt ısıtmalı termik aşırı akım rölesi görülmektedir. Endirekt ısıtmalı termik aşırı akım rölesi ısıtıcı, bimetal ve kontak olmak üzere üç kısımdan oluşur. Isıtıcı motora seri olarak bağlanır. Yani ısıtıcıdan motor akım geçer.Motora zarar verecek değerde bir akım sürekli olarak ısıtıcıdan geçerse, meydana gelen ısı bimetali sağa doğru büker. Bimetal kapalı olan kontağı açar. Açılan kontak kontaktörü ve dolayısıyla motoru devreden çıkarır. Böylece motor yanmaktan korunmuş olur.
Motor akımı kısa bir süre için normal değerinin üzerine çıkarsa, ısıtıcıdan geçen bu akım bimetali ısıtacak fırsatı bulamaz. Bu nedenle bimetal bükülmez ve kontak açılmaz. Motor için sakınca yaratmayan bu gibi durumlarda, ısının bimetale iletilmesindeki gecikme, aşırı akım rölesinin çalışmasını engeller.
Şekil 1.40 Endirekt ısıtmalı termik aşırı akım rölesi
1.8.2.2 Direkt Isıtmalı Termik Aşırı Akım Rölesi
Endirekt ısıtmalı termik aşırı akım rölelerinin akım değerleri büyüdükçe, ısıtıcı telin ve bimetalin ölçüleri de büyür. Büyük akımlar için yapılacak endirekt ısıtmalı termik aşırı akım röleleri kullanışlı ve ekonomik olmaz. Bu nedenle akım şiddeti büyük olan termik aşırı akım röleleri Şekil 1.41’de görüldüğü gibi direkt ısıtmalı olarak yapılırlar.
Şekil 1.41 Direkt ısıtmalı termik aşırı akım rölesi
Direkt ısıtmalı termik aşırı akım rölelerinde ısıtıcı eleman bulunmaz. Motor akımı bimetal üzerinden geçer. Bimetalin bükülmesine ve kontağın açılmasına neden olan ısı, bimetalin içinde doğar. Çok büyük akımlar için yapılacak direkt ısıtmalı termik aşırı akım röleleri de aynı nedenlerle kullanışlı ve ekonomik olmaz. Termik aşırı akım rölesi bu durumda bir akım trafosuyla veya şönt dirençle beraber kullanılır.
Gerek akım trafosu ve gerekse şönt direnç termik aşırı akım rölesinin çalışma akımını yani kapasitesini büyütür. Direkt ve endirekt ısıtmalı termik aşırı akım röleleri çeşitli akım şiddetleti için yapılırlar. Her termik aşırı akım rölesi iki akım değeri arasında çalışır. Aşırı akım rölesi, üzerinde bulunan bir ayar vidasıyla arzulanan motor akımına ayarlanır.
1.8.2.3 Ergiyici Alaşımlı Termik Aşırı Akım Rölesi
Şekil 1.42’de yapısı verilen ergiyici alaşımlı termik aşırı akım rölesi, ısıtıcı, küçük bir tüp ve kontak bloğundan oluşur. Isıtıcı elemanın sardığı tübün içinde, serbestçe dönebilen başka bir tüp daha vardır. İki tübün arasında düşük sıcaklıkta ergiyen bir alaşım bulunur. Ergiyici alaşım normal durumda iki tübü birbirine bağlar. Termik aşırı akım rölesinin ısıtıcısı motor devresine, normalde kapalı kontağı kumanda devresine seri olarak bağlanır. Herhangi bir nedenle motor aşırı akım çekerse, ısıtıcıdan geçen bu akım tüpteki alaşımı ergitir. Yay nedeniyle içteki tüp ve dişli döner.Normalde kapalı kontak açılır. Açılan kontak, kontaktörü ve motoru devreden çıkartır. Motor durunca ısıtıcıdan akım geçmez. Tüpleri birleştiren alaşım kısa bir süre içinde donar. Ergiyici alaşımlı termik aşırı akım röleleri çeşitli akım değerlerinde yapılırlar. Bu aşırı akım rölelerinde akım ayarı yapılmaz.
Şekil 1.42 Ergiyici alaşımlı termik aşırı akım rölesi
1.8.2.4 Termik Aşırı Akım Rölelerinin Motor Devrelerinde Kullanımı
Termik aşırı akım röleleri üç fazlı motor devrelerinde genellikle Şekil 1.43’teki gibi bağlanırlar. Bu bağlantıda her faz üzerine bir termik aşırı akım rölesi konur. Üç termik aşırı akım rölesi bir kapalı kontağı kumanda eder. Motor çalışırken herhangi bir nedenle uzun süre akım çekerse, termik aşırı akım rölesinin kapalı kontağı açılır. Çalışan kontaktör ve motor devreden çıkar. Böylece motor yanmaktan korunmuş olur.
Şekil 1.43 Termik aşırı akım rölelerinin güç ve kumanda devrelerinde gösterimi
Bobini enerjilendikten veya bobinin enerjisi kesildikten belirli bir süre sonra, kontakları durum değiştiren rölelere, zaman rölesi adı verilir. Çalışma şekillerine göre zaman röleleri şu şekilde sınıflandırılabilir;
- Çekmede Gecikmeli (Düz) Zaman Rölesi
- Düşmede Gecikmeli (Ters) Zaman Rölesi
İç yapısına göre zaman röleleri ise şu şekilde sınıflandırılabilir;
- Pistonlu Zaman Rölesi
- Motorlu Zaman Rölesi
- Doğru Akım Zaman Rölesi
- Termik Zaman Rölesi
- Termistörlü Zaman Rölesi
Şekil 1.44 Zaman rölesi
1.9.1 Çalışma Şekillerine Göre Zaman Röleleri
1.9.1.1 Düz Zaman Rölesi
Bobini enerjilendikten belli bir süre sonra gecikme yapan, yani kontakları konum değiştiren rölelerdir. Bobin enerjisi kesildiğinde kontaklar eski haline dönerler. Şekil 1.45’te de rölelerin devrelerde ne şekilde sembolize edildiği görülmektedir.
Şekil 1.45 Düz zaman rölesi ve kontaklarının simgeleri
1.9.1.2 Ters Zaman Rölesi
Bobinin enerjisi kesildikten belli bir süre sonra gecikme yapan zaman rölesidir. Enerji verildikten sonra hemen kontaklar durum değişdirir. Enerji kesildikten bir süre sonra iletime izin verilir.
Şekil 1.46 Ters zaman rölesi ve kontaklarının simgeleri
1.9.2 İç Yapılarına Göre Zaman Röleleri
1.9.2.1 Pistonlu Zaman Rölesi
Zaman gecikmesi bir pistonla sağlanan zaman rölelerine, pistonlu zaman rölesi adı verilir. Düz zaman rölelerinde bobine gerilim verdiğimizde karşısındaki paleti çeker. Şekildeki gibi 1-2 ve 3-4 numaralı kontaklar hemen, 5-6 ve 7-8 numaralı kontaklar zaman gecikmesiyle şekil değiştirirler. Bu gecikmeyi sağlayan bir piston ya da bunun içinde bulunan yağ veya havadır.
|
|
Pistonlu ters zaman rölesi, bobinin gerilimi kesildikten sonra gecikme yapar. Bobine gerilim verdiğimizde kontakların tamamı şekil değiştirir. Bobin gerilimi kesildiğinde, şekilden de görüldüğü gibi 1-2 ve 3-4 numaralı kontaklar hemen, 5-6 ve 7-8 numaralı kontaklar gecikmeli olarak şekil değiştirir.
Şekil 1.48 Düz zaman rölesi ve |
|
1.9.2.2 Motorlu Zaman Rölesi
Motorlu zaman rölelerinde genel olarak senkron motor kullanılır. Motor miline bağlı bir dizi dişliden ve kontaklardan ibarettir. Motor çalışmaya başladığında, P pimi vasıtasıyla belli zaman sonunda, kapalı kontaklar açılır, açık kontaklar kapanır ve motor frenlenir. Bu anda aynı zamanda dişliler bir yay vasıtasıyla ters yönde kurulur. Motorun akımı kesildiğinde dişliler, dolayısıyla kontaklar eski durumuna gelir. Motorun frenlenmesi esnasında geçen akım, motor sargıları için bir sakınca teşkil etmez.
Hiç yorum yok:
Yorum Gönder